

Off Grid POTA HF Operation

Bob WB4SON

Newport County Radio Club Feb 12, 2024

What we will be discussing

With the explosion of Parks On The Air, and portable operation in general, we will cover the following:

- Power Requirements of typical HF rigs
- Battery Technology and Sizing
- Solar Panels
- Charge Controllers

Power Requirements

A typical POTA activation lasts an hour or less and in RI will be one or more QSOs a minute

Icom IC-7300 (modern)

CW: 5.5 A/H

SSB: 5.8 A/H

Icom IC-706

CW/SSB 7.4 A/H

Elecraft K3

CW/SSB: 9.5 A/H

NOTE: More casual Operation (20 QSOs/Hour) will take about 30% less current

How Much Voltage does your rig really need?

- While we use terms like "12 volt battery", our rigs are really designed for a car's electrical system.
- An Icom IC-7300 has a specification of 13.8 volts +/- 15%. In other words, it will work from a range of 11.8 volts to 15.9 volts.

If your voltage drops much below 12 volts, your rig will stop working!!

What about Sealed Lead Acid?

A 15AH Sealed Led Acid (SLA) costs \$37

- At a 5.8 Amp discharge rate, the voltage will drop below 11.8 volts in only 60 minutes!!! (Usable capacity is 5.8AH)
- Life depends on discharge rate. At a 5.8 Amp rate it will last about 200 cycles.
- When we are done with it, it is HazMat with a \$10 disposal fee.

Weight: 9.4 Pounds

Height: 4 inches

Length: 6 inches

Depth 3.9 inches

A BETTER Choice: Lithium Iron Phosphate

- Battery Starts around 14 volts and will remain above 12 volts for more than 90% of it's rated capacity – ideal voltage range for ham use!
- It weighs half as much (4.2 pounds)
- It lasts TEN TIMES LONGER (2000 cycles)
- You can use 100% of its capacity without impacting life
- LiFePO4 "iron" batteries are MUCH safter than LiPo

The field performance of a 15AH LiFePO4 battery is equivalent to 3 SLA batteries weighting almost 30 pounds!!!

Life Cost of LiFePO4 vs SLA

The up-front cost of a 15 AH LiFePO4 battery is about \$140. It provides us with about 3 hours of operation and will do that 2,000 times.

To equal the capacity (3 hours of operation) and life, you will need to purchase 30 SLA batteries at \$37 each, for a life cost of \$1,100.

Those 30 SLA batteries will weigh 300 pounds and are all HazMat

Why chose 15AH?

Based on 12 years of field use and data from 50+ activations, it really is a personal choice

- Started at 60AH, ran a Field Day GOTA station with that and a 100-watt solar panel and had power left over.
- Got tired of lugging that around, so started using a 30AH battery
- Over time realized that a 15AH battery covered the longest POTA I've done (4 parks in a day)
- Like the idea of owning TWO 15AH batteries rather than ONE 30AH

Charging a LiFePO4 battery

Actual technology is simpler than an SLA charger. The charger will have a voltage limit between 14.2-14.6 volts and will limit the current to a value less than the Amp Hour capacity of the battery.

I use a 4A output Bioenno charger with mine (costs about \$25)

Solar Charging LiFePO4 batteries can easily be charged with portable solar panels AND an appropriate charge controller.

30-watt
PowerFilm
foldable panel
with Genasun
MPPT Charger

Solar Panels

Solar panels come in all sorts of capacities and types, like rigid panel, folding, rollable, etc.

I've been using a folding 30-watt PowerFilm panel that puts out about 2 amps at 16 volts. Newer panels are smaller and less costly

Bioenno BSP-60-LITE \$150

3.3 Amps @ 18 volts -> 60 watts Weighs 5.5 pounds 20x14x2" folded 27x19x0.3" unfolded

Things to watch out for

Solar panels work best on bright sunny days with NO shading. Sun should be at a 90-degree angle to the panel.

- On an overcast day, you might get 10% output power
- If you shade the panel (shadow of a tree), expect to produce about 30% power
- If you don't keep the panel perpendicular to the sun by moving it throughout the day you will get about 50% power

In the field, I move my panel about once every 2 hours

Charge Controllers

- The purpose of the charge controller is to ensure that the output voltage remains at an appropriate level for the battery technology
- Essentially it is a voltage-limited power supply
- For LiFePO4, the voltage limit is set to 14.2~14.6 volts
- Current is normally limited by the maximum capacity of a particular solar panel (like 3.3 amps for a 60-watt panel)

Charge Controller Types

- Cheapest are Pulse Width Modulation (PWM) – Keeps battery voltage at a safe level but won't use 20-25% of your panel's capacity. Your 60-watt panel will only provide about 47 watts while charging
- Optimal is MPPT (Maximum Power Point Tracking) Costs more but uses all your panel capacity. Bottom line is your 60-watt panel's 3.3 amp output will generate 4.0 amps of charging current

What I use

Genasun GV-10-Li-14.2V \$140

- Up to 10.5 amps
- Up to 35 volts
- 98% efficient
- Zero detectable RFI
- Industrial components

6.5 Ounces

5.5" long

2.5" tall

1.2" thick