Sensor Node Functional Trade-off Study

ÄRTEN™ An ARRL Foundation Club Grant Fueled Project

19 March 2023

KB1ZZU

ÄRTEN™

(Amateur Radio Training Experiment Network)

- A pilot community learning opportunity in the 1-10GHz Super High Frequency (SHF) ham bands at the intersection of amateur radio + mesh network technology.
- The ÄRTEN™ project was started in 2020 at the Newport County Radio Club (NCRC) to provide a low cost of entry (\$20 to \$100) opportunity for club members to learn about and use HAM SHF bands and learn about RF networking techniques.

ÄRTEN™ Node Requirements

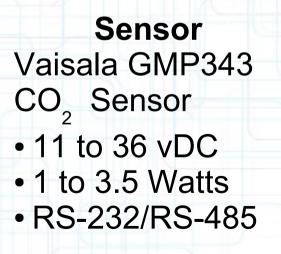
- Mesh nodes are based on commercial 2.4 GHz WiFi routers running OpenWRT (from open wireless router).
- Further, routers are selected from the AREDN (Amateur Radio Emergency Data Network) compatibility list and then reflashed with AREDN firmware to enable amateur radio frequency use.
- ÄRTEN™ uses the 2.4 GHz (13 cm) band to avoid the more popular (emergency) use of the 5 GHz (5 cm) band.

ARRL Target Grant Categories and ÄRTEN™ Goals

- NCRC received a 2023 ARRL Foundation Club Grant to continue ÄRTEN™
 - Goal #1: Introduce Hams to low cost equipment to get on the air in the SHF bands
 - Goal #2: Provide Hams the opportunity to be active by participating in the team project
 - Goal #3: Expose Hams to RF networking techniques
 - Goal #4: Expose youth and adults to concepts of wireless communications in the 1-10 GHz range
 - Goal #5: Expose youth and adults to environmental monitoring (other than weather) using CO₂ sensors and an Amateur Radio supported Internet of Things (IoT)
 - Goal #6: Provide Hams another opportunity to utilize granted SHF privileges

ÄRTEN™ Sensor Node Requirements

(1) Low cost (2) AREDN compatibility (3) Low power (for battery-powered remote locations) (4) Environmental enclosures (for outside deployment) (5) Long range (for broad accessibility) (6) Reproducible (for broad participation)


Concept Commonalities

- The following functions will not be discussed as all the concepts have similar needs:
 - Battery power
 - Solar panel and charge controller
 - Environmental (weather-proof) enclosure

Original 2022 Concept

Interface (Raspberry Pi • 5VDC 0.5 to 4Watts Arduino • 9 vDC 4 to 100 mAmps RS-232-USB adapter FPGA

External Antenna

Router

- GL·iNet
- GL-AR150-Ext
- 5 vDC / 1 Amp
- < 1.5 Watt
- USB/Ethernet

- Indicate the financial advantages for the customer
- Compare quality and price with those of the competition

COST
\$60
\$15 to \$200
\$18 to \$105 \$3 to \$25
\$12
TBD
\$6,000
> \$6,000

NOTES:

 Obviously, the \$6,000 sensor, while highly accurate, is a nonstarter for a low cost project.

• However, since NCRC has two units on-hand, they may be worth experimenting with.

• Further, the GL·iNet GL-AR150-Ex is end-of-life.

Strengths and Advantages

- Router external antenna allows range upgrades
 - Router range tested in 2021 to 3+ miles with external 4 Watt WiFi Booster and Yagi antenna
- Highly accurate sensor
- Lowest power option if USB sensor interface can be implemented in OpenWrt directly on the router.
 - USB port may only be for phone tethering

2023 Ethernet Sensor Concept

Sensor Temco CO2-W-TH CO₂ /Temp/Humid

- Ethernet/RS-485
- 15-24 vDC or AC
- 2 Watts typical
- PoE

External Antennas

Ethernet

Interface Ethernet Cable

Router GL·iNet

- GL-AR300M16-Ext
 - Ethernet/USB
 - 5vDC / 2 Amps
 - < 2Watts

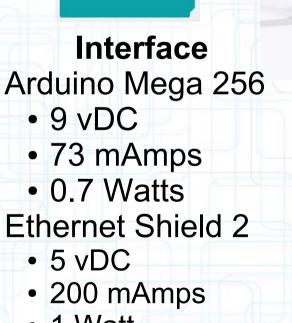
EQUIPMENTco	COST
Router: GL·iNet GL- AR300MT16-Ext	\$27
Interface:	
Ethernet Jumper	\$2
Sensor: Temco CO2-W-TH	\$144
TOTAL	\$173

NOTES:

• GL·iNet GL-AR300M16-Ext router is a MIMO device. Two RF inputs will likely double the cost of external WiFi range boosters and antennas over standard devices.

15 vDC sensor presents supply voltage challenge.

Strengths and Advantages


- Router external antenna allows range upgrades.
 - MIMO offers opportunity for greater range
- 4 Watts total power consumption.
- Built-in sensor Ethernet offers simplest integration with router.

2023 Arduino Ethernet Concept

Sensor Grove - CO2 & Temp. & Humid. Sensor for Arduino (SCD30) - 3-in-1 • 3.3 to 5.5 vDC

- 19 mAmps Avg.
- 0.1 Watt

 Θ

ARDUTNO

• 1 Watt

External Antennas

Ethernet

Router

GL·iNet

GL-AR300M16-Ext

- Ethernet/USB
- 5vDC / 2 Amps
- < 2Watts

EQUIPMENT	COST
Router: GL·iNet GL- AR300MT16-Ext	\$27
Interface:	
Arduino Mega 256	\$49
Ethernet Shield 2	\$32
Sensor: Grove - CO2 & Temp. & Humid. Sensor for Arduino (SCD30) - 3-in-1	\$59
TOTAL	\$167

NOTES:

• GL iNet GL-AR300M16-Ext router is a MIMO device. Two RF inputs will likely double the cost of external WiFi range boosters and antennas over standard devices.

More effort to integrate: requires Arduino programming

Strengths and Advantages

- Router external antenna allows range upgrades.
 - MIMO offers opportunity for greater range
- 3 Watts total power consumption.
- Offers most flexibility to lower cost per unit
 - Arduino model & sensor options
- Offers most flexibility to lower power consumption
 - Arduino model & low power modes
- Large Arduino support community

 Begin Integration of Ethernet Sensor Concept

> Purchase Temco CO2-W-TH CO₂ /Temperature/Humidity Ethernet Sensor w/POE (Power Over Ethernet)

- Begin Power Studies
 - Battery sizing
 - Solar panel choice
 - Solar charger choice